Твое тело » Обмен веществ (метаболизм)

Обмен веществ (метаболизм)

Метаболизм (от греч. Μεταβολή — «превращение, изменение»), или обмен веществ — набор химических реакций, которые возникают в живом организме для поддержания жизни. Эти процессы позволяют организмам расти и размножаться, сохранять свои структуры и отвечать на воздействия окружающей среды. Метаболизм обычно делят на две стадии: в ходе катаболизма сложные органические вещества деградируют до более простых; в процессах анаболизма с затратами энергии синтезируются такие вещества, как белки, сахара, липиды и нуклеиновые кислоты.

Обмен веществ происходит между клетками организма и межклеточной жидкостью, постоянство состава которой поддерживается кровообращением: за время прохождения крови в капиллярах через проницаемые стенки капилляров плазма крови 40 раз полностью обновляется с интерстициальной жидкостью. Серии химических реакций обмена веществ называют метоболическими путями, в них при участии ферментов одни биологически значимые молекулы последовательно превращаются в другие. Ферменты играют важную роль в метаболических процессах потому, что:

  • действуют как биологические катализаторы и снижают энергию активации химической реакции;
  • позволяют регулировать метаболические пути в ответ на изменения среды клетки или сигналы от других клеток.

Особенности метаболизма влияют на то, будет ли пригодна определенная молекула для использования организмом в качестве источника энергии. Так, например, некоторые прокариоты используют сероводород в качестве источника энергии, однако этот газ ядовит для животных. Скорость обмена веществ также влияет на количество пищи, необходимой для организма.

Основные метаболические пути и их компоненты одинаковы для многих видов, что свидетельствует о единстве происхождения всех живых существ. Например, некоторые карбоновые кислоты, являющиеся интермедиатами цикла трикарбоновых кислот присутствуют во всех организмах, начиная от бактерий и заканчивая многоклеточными организмами эукариот. Сходства в обмене веществ, вероятно, связаны с высокой эффективностью метаболических путей, а также с их ранним появлением в истории эволюции.

1. Ассимиляция

Обмен веществ и энергии в клетке

Особенно значительны различия в обмена веществ у представителей разных групп организмов в начальных этапах процесса ассимиляции. Как полагают, первичные организмы использовали для питания органического вещества, возникшие абиогенным путём; при последующем развитии жизни у некоторых из живых существ возникла способность к синтезу органических веществ. По этому признаку все организмы могут быть разделены на гетеротрофов и автотрофов. У гетеротрофов, к которым принадлежат все животные, грибы и многие виды бактерий, Обмен веществ основан на питании готовыми органическими веществами. Правда, они обладают способностью усваивать некоторое, сравнительно незначительное, количество CO2, используя его для синтеза более сложных органических веществ. Однако этот процесс совершается гетеротрофами только за счёт использования энергии, заключённой в химических связях органических веществ пищи. Автотрофы (зелёные растения и некоторые бактерии) не нуждаются в готовых органических веществах и осуществляют их первичный синтез из входящих в их состав элементов. Некоторые из автотрофов (серобактерии, железобактерии и нитрифицирующие бактерии) используют для этого энергию окисления неорганических веществ. Зелёные растения образуют органические вещества за счёт энергии солнечного света в процессе фотосинтеза — основного источника органического вещества на Земле.

Биосинтез углеводов

В процессе фотосинтеза зелёные растения ассимилируют CO2 и образуют углеводы, фотосинтез представляет собой цепь последовательно совершающихся окислительно-восстановительных реакций, в которых принимает участие хлорофилл — зелёный пигмент, способный улавливать солнечную энергию. За счёт энергии света происходит фотохимическое разложение воды, причём кислород выделяется в атмосферу, а водород используется для восстановления CO2. На сравнительно ранних этапах фотосинтеза образуется фосфоглицериновая кислота, которая, подвергаясь восстановлению, даёт трёхуглеродные сахара — триозы. Две триозы — фосфоглицериновый альдегид и фосфодиоксиацетон — под действием фермента альдолазы конденсируются с образованием гексозы — фруктозо-дифосфата, который, в свою очередь, превращается в другие гексозы — глюкозу, маннозу, галактозу. Конденсация фосфодиоксиацетона с рядом других альдегидов приводит к образованию пентоз. Образовавшиеся в растениях гексозы служат исходным материалом для синтеза сложных углеводов — сахарозы, крахмала, инулина, целлюлозы (клетчатки) и др. Пентозы дают начало высокомолекулярным пентозанам, участвующим в построении опорных тканей растений. Во многих растениях гексозы могут превращаться в полифенолы, фенолкарбоновые кислоты и другие соединения ароматического ряда. В результате полимеризации и конденсации из этих соединений образуются дубильные вещества, антоцианы,флавоноиды и другие сложные соединения.

Животные и другие гетеротрофы получают углеводы в готовом виде с пищей, преимущественно в виде дисахаридов и полисахаридов (сахароза, крахмал). В пищеварительном тракте углеводы под действием ферментов расщепляются на моносахариды, которые всасываются в кровь и разносятся ею по всем тканям организма. В тканях из моносахаридов синтезируется запасной полисахарид животных — гликоген.

Биосинтез липидов

Первичные продукты фотосинтеза, хемосинтеза и образовавшиеся из них или поглощённые с пищей углеводы являются исходным материалом для синтеза липидов — жиров и других жироподобных веществ. Так, например, накопление жиров в созревающих семенах масличных растений происходит за счёт сахаров. Некоторые микроорганизмы (например, Torulopsis lipofera) при культивировании на растворах глюкозы за 5 часов образуют до 11% жира на сухое вещество. Глицерин, необходимый для синтеза жиров, образуется путём восстановления фосфоглицеринового альдегида. Высокомолекулярные жирные кислоты — пальмитиновая, стеариновая, олеиновая и другие, дающие при взаимодействии с глицерином жиры, синтезируются в организме из уксусной кислоты — продукта фотосинтеза или окисления веществ, образовавшихся в результате распада углеводов. Животные получают жиры также с пищей. При этом жиры в пищеварительном тракте расщепляются липазами на глицерин и жирные кислоты и усваиваются организмом.

Биосинтез белков

У автотрофных организмов синтез белков начинается с усвоения неорганического азота (N) и синтеза аминокислот. Некоторые микроорганизмы в процессе азотфиксации усваивают из воздуха молекулярный азот, который при этом превращается в аммиак (NH3). Высшие растения и хемосинтезирующие микроорганизмы потребляют азот в виде аммонийных солей и нитратов, причём последние предварительно подвергаются ферментативному восстановлению до NH3. Под действием соответствующих ферментов NH3 затем соединяется с кето- или оксикислотами, в результате чего образуются аминокислоты (например, пировиноградная кислота и NH3 дают одну из наиболее важных аминокислот — аланин). Образовавшиеся аминокислоты могут далее подвергаться переаминированию и другим превращениям, давая все др. аминокислоты, входящие в состав белков.

Гетеротрофные организмы также способны синтезировать аминокислоты из аммиачных солей и углеводов, однако животные и человек получают основную массу аминокислот с белками пищи. Ряд аминокислот гетеротрофные организмы синтезировать не могут и должны получать их в готовом виде в составе пищевых белков.

Аминокислоты, соединяясь друг с другом под действием соответствующих ферментов, образуют различные белки. Белками являются все ферменты. Некоторые структурные и сократительные белки также обладают каталитической активностью. Так, мышечный белок миозин способен гидролизовать аденозинтрифосфат (АТФ), поставляющий энергию, необходимую для мышечного сокращения. Простые белки, вступая во взаимодействие с другими веществами, дают начало сложным белкам — протеидам: соединяясь с углеводами, белки образуют гликопротеиды, с липидами — липопротеиды, с нуклеиновыми кислотами —нуклеопротеиды. Липопротеиды — основной структурный компонент биологических мембран; нуклеопротеиды входят в состав хроматина клеточных ядер, образуют клеточные белоксинтезирующие частицы —рибосомы.

2. Диссимиляция

Источником энергии, необходимой для поддержания жизни, роста, размножения, подвижности, возбудимости и других проявлений жизнедеятельности, являются процессы окисления части тех продуктов расщепления, которые используются клетками для синтеза структурных компонентов.

Наиболее древним и поэтому наиболее общим для всех организмов является процесс анаэробного расщепления органических веществ, осуществляющийся без участия кислорода. Позднее этот первоначальный механизм получения энергии живыми клетками дополнился окислением образующихся промежуточных продуктов кислородом воздуха, который появился в атмосфере Земли в результате фотосинтеза. Так возникло внутриклеточное, или тканевое дыхание.

Диссимиляция углеводов

Основным источником запасённой в химических связях энергии у большинства организмов являются углеводы. Расщепление полисахаридов в организме начинается с их ферментативного гидролиза. Например, у растений при прорастании семян запасённый в них крахмал гидролизуется амилазами, у животных поглощённый с пищей крахмал гидролизуется под действием амилаз слюны и поджелудочной железы, образуя мальтозу. Мальтоза далее гидролизуется с образованием глюкозы. В животном организме глюкоза образуется также в результате расщепления гликогена. Глюкоза подвергается дальнейшим превращениям в процессах брожения или гликолиза, в результате которых образуется пировиноградная кислота. Последняя, в зависимости от типа обмена веществ данного организма, сложившегося в процессе исторического развития, может далее подвергаться разнообразным превращениям. При различных видах брожений и при гликолизе в мышцах пировиноградная кислота подвергается анаэробным превращениям. В аэробных условиях — в процессе дыхания — она может подвергаться окислительному декарбоксилированию с образованием уксусной кислоты, а также служить источником образования других органических кислот: щавелево-уксусной, лимонной, цис-аконитовой, изолимонной, щавелево-янтарной, кетоглутаровой, янтарной, фумаровой и яблочной. Их взаимные ферментативные превращения, приводящие к полному окислению пировиноградной кислоты до CO2 и H2O, называются трикарбоновых кислот циклом, или циклом Кребса.

Диссимиляция жиров

Диссимиляция жиров также начинается с их гидролитического расщепления липазами с образованием свободных жирных кислот и глицерина; эти вещества могут далее легко окисляться, давая, в конечном счёте, CO2 и H2O. Окисление жирных кислот идёт главным образом путём b-окисления, то есть таким образом, что от молекулы жирной кислоты отщепляются два углеродных атома, дающих остаток уксусной кислоты, и образуется новая жирная кислота, которая может подвергнуться дальнейшему b-окислению. Получающиеся остатки уксусной кислоты либо используются для синтеза различных соединений (например, ароматических соединений, изопреноидов и другие), либо окисляются до CO2 и H2O.

Диссимиляция белков

Диссимиляция белков начинается с их гидролитического расщепления протеолитическими ферментами, в результате чего образуются низкомолекулярные пептиды и свободные аминокислоты. Такого рода вторичное образование аминокислот происходит, например, весьма интенсивно при прорастании семян, когда белки, содержащиеся в эндосперме или в семядолях семени, гидролизуются с образованием свободных аминокислот, частично используемых на построение тканей развивающегося растения, а частично подвергающихся окислительному распаду. Происходящий в процессе диссимиляции окислительный распад аминокислот осуществляется путём дезаминирования и приводит к образованию соответствующих кето- или оксикислот. Эти последние либо подвергаются дальнейшему окислению до CO2 и H2O, либо используются на синтез различных соединений, в том числе новых аминокислот. У человека и животных особенно интенсивный распад аминокислот идёт в печени.

Образующийся при дезаминировании аминокислот свободный МН3 ядовит для организма; он связывается с кислотами или же превращается в мочевину, мочевую кислоту, аспарагин или глутамин. У животных аммонийные соли, мочевина и мочевая кислота выводятся из организма, у растений же аспарагин, глутамин и мочевина используются в организме в качестве запасных источников азота. Образование мочевины при окислительной диссимиляции аминокислот осуществляется в основном с помощью орнитинового цикла, который тесно связан с др. превращениями белков и аминокислот в организме. Диссимиляция аминокислот может происходить также путём их декарбоксилирования, при котором из аминокислоты образуются CO2 и какой-либо амин или же новая аминокислота (например, при декарбоксилировании гистидина образуется гистамин — физиологически активное вещество, а при декарбоксилировании аспарагиновой кислоты — новая аминокислота — (a- или b-аланин). Амины могут подвергаться метилированию, образуя различные бетаины и такие важные соединения, как, например, холин. Растения используют амины (наряду с некоторыми аминокислотами) для биосинтеза алкалоидов.

3. Связь обмена углеводов, липидов, белков и других соединений

Все биохимические процессы, совершающиеся в организме, тесно связаны друг с другом. Взаимосвязь обмена белков с окислительно-восстановительными процессами осуществляется различным образом. Отдельные биохимические реакции, лежащие в основе процесса дыхания, происходят благодаря каталитическому действию соответствующих ферментов, то есть белков. Вместе с тем сами продукты расщепления белков — аминокислоты могут подвергаться различным окислительно-восстановительным превращениям — декарбоксилированию, дезаминированию и другим.

Так, продукты дезаминирования аспарагиновой и глутаминовой кислот — щавелево-уксусная и a-кетоглутаровая кислоты — являются вместе с тем важнейшими звеньями окислительных превращений углеводов, происходящих в процессе дыхания. Пировиноградная кислота — важнейший промежуточный продукт, образующийся при брожении и дыхании,— также тесно связана с белковым обменом: взаимодействуя с NH3 и соответствующим ферментом, она даёт важную аминокислоту a-аланин. Теснейшая связь процессов брожения и дыхания с обменом липидов в организме проявляется в том, что фосфоглицериновый альдегид, образующийся на первых этапах диссимиляции углеводов, является исходным веществом для синтеза глицерина. С другой стороны, в результате окисления пировиноградной кислоты получаются остатки уксусной кислоты, из которых синтезируются высокомолекулярные жирные кислоты и разнообразные изопреноиды (терпены, каротиноиды, стероиды).

4. Роль витаминов и минеральных веществ в обмене веществ

В превращениях веществ в организме важное место занимают витамины, вода и различные минеральные соединения. Витамины участвуют в многочисленных ферментативных реакциях в составе коферментов. Так, производное витамина B1 — тиаминпирофосфат — служит коферментом при окислительном декарбоксилировании (a-кетокислот, в том числе пировиноградной кислоты; фосфорнокислый эфир витамина B6— пиридоксальфосфат — необходим для каталитического переаминирования, декарбоксилирования и других реакций обмена аминокислот. Производное витамина А входит в состав зрительного пигмента. Функции ряда витаминов (например, аскорбиновой кислоты) окончательно не выяснены. Разные виды организмов различаются как способностью к биосинтезу витаминов, так и своими потребностями в наборе тех или иных поступающих с пищей витаминов, которые необходимы для нормального обмен веществ.

Важную роль в минеральном обмене играют Na, К, Ca, Р, а также микроэлементы и другие неорганические вещества. Na и К участвуют в биоэлектрических и осмотических явлениях в клетках и тканях, в механизмах проницаемости биологических мембран; Ca и Р — основные компоненты костей и зубов; Fe входит в состав дыхательных пигментов —гемоглобина и миоглобина, а также ряда ферментов. Для активности последних необходимы и другие микроэлементы (Cu, Mn, Mo, Zn).

Решающую роль в энергетических механизмах обмена веществ играют эфиры фосфорной кислоты и прежде всего аденозинфосфорные кислоты, которые воспринимают и накапливают энергию, выделяющуюся в организме в процессах гликолиза, окисления, фотосинтеза. Эти и некоторые другие богатые энергией соединения передают заключённую в их химических связях энергию для использования её в процессе механической, осмотической и др. видов работы или же для осуществления синтетических реакций, идущих с потреблением энергии.

5. Регуляция обмена веществ

Удивительная согласованность и слаженность процессов обмена веществ в живом организме достигается путём строгой и пластичной координации обмена веществ как в клетках, так и в тканях и органах. Эта координация определяет для данного организма характер обмена веществ, сложившийся в процессе исторического развития, поддерживаемый и направляемый механизмами наследственности и взаимодействием организма с внешней средой.

Регуляция обмена веществ на клеточном уровне осуществляется путём регуляции синтеза и активности ферментов. Синтез каждого фермента определяется соответствующим геном. Различные промежуточные продукты обмена веществ, действуя на определённый участок молекулы ДНК, в котором заключена информация о синтезе данного фермента, могут индуцировать (запускать, усиливать) или, наоборот, репрессировать (прекращать) его синтез. Так, кишечная палочка при избытке изолейцина в питательной среде прекращает синтез этой аминокислоты. Избыток изолейцина действует двояким образом: а) угнетает (ингибирует) активность фермента треониндегидратазы, катализирующего первый этап цепи реакций, ведущих к синтезу изолейцина, и б) репрессирует синтез всех ферментов, необходимых для биосинтеза изолейцина (в том числе и треониндегидратазы). Ингибирование треониндегидратазы осуществляется по принципу аллостерической регуляции активности ферментов.

Предложенная французскими учёными Ф. Жакобом и Ж. Моно теория генетической регуляции рассматривает репрессию и индукцию синтеза ферментов как две стороны одного и того же процесса. Различные репрессоры являются в клетке специализированными рецепторами, каждый из которых "настроен" на взаимодействие с определённым метаболитом, индуцирующим или репрессирующим синтез того или иного фермента. Таким образом, в клетки, полинуклеотидных цепочках ДНК заключены "инструкции" для синтеза самых разнообразных ферментов, причём образование каждого из них может быть вызвано воздействием сигнального метаболита (индуктора) на соответствующий репрессор.

Важнейшую роль в регуляции обмена веществ и энергии в клетках играют белково-липидные биологические мембраны, окружающие протоплазму и находящиеся в ней ядро, митохондрии, пластиды и другие субклеточные структуры. Поступление различных веществ в клетку и выход их из неё регулируются проницаемостью биологических мембран. Значительная часть ферментов связана с мембранами, в которые они как бы "вмонтированы". В результате взаимодействия того или иного фермента с липидами и другими компонентами мембраны конформация его молекулы, а следовательно, и его свойства как катализатора будут иными, чем в гомогенном растворе, Это обстоятельство имеет огромное значение для регулирования ферментативных процессов и обмена веществ в целом.

Важнейшим средством, с помощью которого осуществляется регуляция обмена веществ в живых организмах, являются гормоны. Так, например, у животных при значительном понижении содержания caxapa в крови усиливается выделение адреналина, способствующего распаду гликогена и образованию глюкозы. При избытке сахара в крови усиливается секреция инсулина, который тормозит процесс расщепления гликогена в печени, вследствие чего в кровь поступает меньше глюкозы. Важная роль в механизме действия гормонов принадлежит циклической аденозинмонофосфорной кислоте (цАМФ). У животных и человека гормональная регуляция Обмен веществ тесно связана с координирующей деятельностью нервной системы.

Благодаря совокупности тесно связанных между собой биохимических реакций, составляющих обмен веществ, осуществляется взаимодействие организма со средой, являющееся непременным условием жизни. Ф. Энгельс писал: "Из обмена веществ посредством питания и выделения... вытекают все прочие простейшие факторы жизни..." ("Анти-Дюринг", 1966, с. 80). Таким образом развитие (онтогенез) и рост организмов, наследственность и изменчивость, раздражимость и высшая нервная деятельность — эти важнейшие проявления жизни могут быть поняты и подчинены воле человека на основе выяснения наследственно обусловленных закономерностей обмена веществ и сдвигов, происходящих в нём под влиянием меняющихся условий внешней среды (в пределах нормы реакции данного организма).

6. Нарушения обмена веществ

Продукты, улучшающие обмен веществ (метаболизм)

Любое заболевание сопровождается нарушениями обмена веществ. Особенно отчётливы они при расстройствах трофической и регуляторной функций нервной системы и контролируемых ею желёз внутренней секреции. Обмен веществ нарушается также при ненормальном питании (избыточный или недостаточный и качественно неполноценный пищевой рацион, например недостаток или избыток витаминов в пище и другое). Выражением общего нарушения обмена веществ (а тем самым и обмена энергии), обусловленного изменением интенсивности окислительных процессов, являются сдвиги в основном обмене. Повышение его характерно для заболеваний, связанных с усиленной функцией щитовидной железы, понижение — с недостаточностью этой железы, выпадением функций гипофиза и надпочечников и общим голоданием. Выделяют нарушения белкового, жирового, углеводного, минерального, водного обмена; однако все виды обмена веществ так тесно взаимосвязаны, что подобное деление условно.

Нарушения обменов веществ выражаются в недостаточном или избыточном накоплении веществ, участвующих в обмене, в изменении их взаимодействия и характера превращений, в накоплении промежуточных продуктов обмена веществ, в неполном или избыточном выделении продуктов и в образовании веществ, не свойственных нормальному обмену. Так, диабет сахарный характеризуется недостаточным усвоением углеводов и нарушением их перехода в жир; при ожирении происходит избыточное превращение углеводов в жир; подагра связана с нарушением выделения из организма мочевой кислоты. Избыточное выделение с мочой мочекислых, фосфорнокислых и щавелевокислых солей может привести к выпадению этих солей в осадок и к развитию почечнокаменной болезни. Недостаточное выделение ряда конечных продуктов белкового обмена вследствие некоторых заболеваний почек приводит к уремии. Накопление в крови и тканях ряда промежуточных продуктов обмена веществ (молочной, пировиноградной, ацетоуксусной кислот) наблюдается при нарушении окислительных процессов, расстройствах питания и авитаминозах; нарушение минерального обмена может привести к сдвигам кислотно-щелочного равновесия. Расстройство обмена холестерина лежит в основе атеросклероза и некоторых видов желчнокаменной болезни. К серьёзным расстройствам обмена веществ следует отнести нарушение усвоения белка при тиреотоксикозе, хроническом нагноении, некоторых инфекциях; нарушение усвоения воды при диабете несахарном, солей извести и фосфора при рахите, остеомаляции и других заболеваниях костной ткани, солей натрия — при аддисоновой болезни.

Диагностика нарушений обмена веществ основывается на исследовании газообмена, соотношения между количеством того или иного поступающего в организм вещества и выделением его, определении химических составных частей крови, мочи и других выделений. Для изучения нарушений обмена веществ вводят изотопные индикаторы (например, радиоактивный йод — главным образом 131I — при тиреотоксикозе).

Биологические молекулы

Органические вещества, входящие в состав всех живых существ (животных, растений, грибов и микроорганизмов), представлены в основном аминокислотами, углеводами, липидами (часто называемые жирами) и нуклеиновыми кислотами. Так как эти молекулы имеют важное значение для жизни, метаболические реакции сосредоточены на создании этих молекул при строительстве клеток и тканей или разрушении их с целью использования в качестве источника энергии. Многие важные биохимические реакции объединяются вместе для синтеза ДНК и белков.

Аминокислоты и белки

Белки являются линейными биополимерами и состоят из остатков аминокислот, соединённых пептидными связями. Некоторые белки являются ферментами и катализируют химические реакции. Другие белки выполняют структурную или механическую функцию (например, образуют цитоскелет). Белки также играют важную роль в передаче сигнала в клетках, иммунных реакциях, агрегации клеток, активном транспорте через мембраны и регуляции клеточного цикла.

Липиды

Липиды входят в состав биологических мембран, например,плазматических мембран, являются компонентами коферментов и источниками энергии. Липиды являются гидрофобными или амфифильными биологическими молекулами, растворимыми в органических растворителях таких, как бензол или хлороформ. Жиры — большая группа соединений, в состав которых входят жирные кислоты и глицерин. Молекула трёхатомного спирта глицерина, образующая три сложные эфирные связи с тремя молекулами жирных кислот, называется триглицеридом.Наряду с остатками жирных кислот, в состав сложных липидов может входить, например, сфингозин (сфинголипиды), гидрофильные группы фосфатов (в фосфолипидах). Стероиды, например холестерол, представляют собой ещё один большой класс липидов.

Углеводы

Сахара могут существовать в кольцевой или линейной форме в виде альдегидов или кетонов, имеют несколько гидроксильных групп. Углеводы являются наиболее распространёнными биологическими молекулами. Углеводы выполняют следующие функции: хранение и транспортировка энергии (крахмал, гликоген), структурная (целлюлозарастений, хитин у животных).Наиболее распространенными мономерами сахаров являются гексозы — глюкоза, фруктоза и галактоза. Моносахариды входят в состав более сложных линейных или разветвленных полисахаридов.

Нуклеотиды

Полимерные молекулы ДНК и РНК представляют собой длинные неразветвленные цепочки нуклеотидов. Нуклеиновые кислоты выполняют функцию хранения и реализации генетической информации, которые осуществляются в ходе процессов репликации,транскрипции, трансляции, и биосинтеза белка.Информация, закодированная в нуклеиновых кислотах, защищается от изменений системами репарации и мультиплицируется при помощи репликации ДНК.

Некоторые вирусы имеют РНК-содержащий геном. Например, вирус иммунодефицита человека использует обратную транскрипцию для создания матрицы ДНК из собственного РНК-содержащего генома.Некоторые молекулы РНК обладают каталитическими свойствами (рибозимы) и входят в состав сплайсосом и рибосом.

Нуклеозиды — продукты присоединения азотистых оснований к сахару рибозе. Примерами азотистых оснований являются гетероциклические азотсодержащие соединения — производные пуринов и пиримидинов. Некоторые нуклеотиды также выступают в качестве коферментов в реакциях переноса функциональных групп.

Кофермент

Метаболизм включает широкий спектр химических реакций, большинство из которых относятся к нескольким основным типам реакций переноса функциональных групп. Для переноса функциональных групп между ферментами, катализирующими химические реакции, используются коферменты. Каждый класс химических реакций переноса функциональных групп катализируется отдельными ферментами и их кофакторами.

Аденозинтрифосфат (АТФ) — один из центральных коферментов, универсальный источник энергии клеток. Этот нуклеотид используется для передачи химической энергии, запасенной в макроэргических связях между различными химическими реакциями. В клетках существует небольшое количество АТФ, который постоянно регенерируется из ADP и AMP. Организм человека за сутки расходует массу АТФ, равную массе собственного тела. АТР выступает в качестве связующего звена между катаболизмом и анаболизмом: при катаболических реакциях образуется АТФ, при анаболических — энергия потребляется. АТФ также выступает донором фосфатной группы в реакциях фосфорилирования.

Витамины

Витамины — низкомолекулярные органические вещества, необходимые в небольших количествах, причём, например, у человека большинство витаминов не синтезируется, а получается с пищей или через микрофлору КТ. В организме человека большинство витаминов являются кофакторами ферментов. Большинство витаминов приобретают биологическую активность в измененном виде, например, все водорастворимые витамины в клетках фосфорилируются или соединяются с нуклеотидами. Сотни различных ферментов дегидрогеназ отнимают электроны из молекул субстратов и переносят их на молекулы NAD+, восстанавливая его до NADH. Окисленная форма кофермента является субстратом для различных редуктаз в клетке. NAD в клетке существует в двух связанных формах NADH и NADPH. NAD+/NADH больше важен для протекания катаболических реакций, а NADP+/NADPH чаще используется в анаболических реакциях.

Минералы и кофакторы

Неорганические элементы играют важнейшую роль в обмене веществ. Около 99 % массы млекопитающего состоит изуглерода, азота, кальция, натрия, магния, хлора, калия, водорода, фосфора, кислорода и серы. Биологически значимые органические соединения (белки, жиры, углеводы и нуклеиновые кислоты) содержат большое количество углерода, водорода, кислорода, азота и фосфора.

Многие неорганические соединения являются ионными электролитами. Наиболее важны для организма ионы натрия,калия, кальция, магния, хлоридов, фосфатов и гидрокарбонатов. Баланс этих ионов внутри клетки во внеклеточной среде определяет осмотическое давление и рН. Концентрации ионов также играют важную роль для функционирования нервных и мышечных клеток. Потенциал действия в возбудимых тканях возникает при обмене ионами между внеклеточной жидкостью и цитоплазмой. Электролиты входят и выходят из клетки через ионные каналы в плазматической мембране. Например, в ходе мышечного сокращения в плазматической мембране, цитоплазме и Т-трубочках перемещаются ионы кальция, натрия и калия.

Переходные металлы в организме являются микроэлементами, наиболее распространены цинк и железо. Эти металлы используются некоторыми белками (например, ферментами в качестве кофакторов) и имеют важное значение для регуляции активности ферментов и транспортных белков. Кофакторы ферментов обычно прочно связаны со специфическим белком, однако могут модифицироваться в процессе катализа, при этом после окончания катализа всегда возвращаются к своему первоначальному состоянию (не расходуются). Металлы-микроэлементы усваиваются организмом при помощи специальных транспортных белков и не встречаются в организме в свободном состоянии, так как связаны со специфическими белками-переносчиками (например, ферритином или металлотионеинами).

Схема обмена веществ

Катаболизм

Катаболизмом называют метаболические процессы, при которых расщепляются относительно крупные органические молекулы сахаров, жиров, аминокислот. В ходе катаболизма образуются более простые органические молекулы, необходимые для реакций анаболизма (биосинтеза). Часто, именно в ходе реакций катаболизма организм мобилизует энергию, переводя энергию химических связей органических молекул, полученных в процессе переваривания пищи, в доступные формы: в виде АТФ, восстановленных коферментов и трансмембранного электрохимического потенциала. Термин катаболизм не является синонимом «энергетического обмена»: у многих организмов (например, у фототрофов) основные процессы запасания энергии не связаны напрямую с расщеплением органических молекул. Классификация организмов по типу метаболизма может быть основана на источнике получения энергии и углерода, что отражено в таблице ниже.

Классификация организмов на основе их метаболизма
Источник энергии Солнечный свет фототрофы
Первичные молекулы хемотрофы
Донор электронов Органическое соединение органотрофы
Неорганическое соединение литотрофы
Источник углерода Органическое соединение гетеротрофы
Неорганическое соединение автотрофы

Органические молекулы используются в качестве источника энергии органотрофами, литотрофы используют неорганические субстраты, а фототрофы потребляют энергию солнечного света. Однако, все эти различные формы обмена веществ зависят от окислительно-восстановительных реакций, которые связаны с передачей электронов от восстановленных доноров молекул, таких как органические молекулы, вода, аммиак, сероводород, на акцепторные молекулы, такие как кислород, нитраты или сульфат.У животных эти реакции сопряжены с расщеплением сложных органических молекул до более простых, таких как двуокись углерода и воду. В фотосинтезирующих организмах — растениях и цианобактериях — реакции переноса электрона не высвобождают энергию, но они используются как способ запасания энергии, поглощаемой из солнечного света.

Катаболизм у животных может быть разделён на три основных этапа. Во-первых, крупные органические молекулы, такие как белки, полисахариды и липиды расщепляются до более мелких компонентов вне клеток. Далее эти небольшие молекулы попадают в клетки и превращается в ещё более мелкие молекулы, например, ацетил-КоА. В свою очередь, ацетильная группа кофермента А окисляется до воды и углекислого газа в цикле Кребса и дыхательной цепи, высвобождая при этом энергию, которая запасается в форме АТР.

Пищеварение

Такие макромолекулы, как крахмал, целлюлоза или белки, должны расщепляться до более мелких единиц прежде, чем они могут быть использованы клетками. Несколько классов ферментов принимают участие в деградации: протеазы, которые расщепляют белки до пептидов и аминокислот, гликозидазы, которые расщепляют полисахариды до олиго- и моносахаридов.

Микроорганизмы выделяют гидролитические ферменты в пространство вокруг себя,чем отличаются от животных, которые выделяют такие ферменты только из специализированных железистых клеток.Аминокислоты и моносахариды, образующиеся в результате активности внеклеточных ферментов, затем поступают в клетки с помощью активного транспорта.

Получение энергии

В ходе катаболизма углеводов сложные сахара расщепляются до моносахаридов, которые усваиваются клетками. Попав внутрь, сахара (например, глюкоза и фруктоза) в процессе гликолиза превращаются в пируват, при этом вырабатывается некоторое количество АТР. Пировиноградная кислота (пируват) является промежуточным продуктом в нескольких метаболических путях. Основной путь метаболизма пирувата — превращаение в ацетил-КоА и далее поступление в цикл трикарбоновых кислот. При этом в цикле Кребса в форме АТР запасается часть энергии, а также восстанавливаются молекулы NADH и FAD. В процессе гликолиза и цикла трикарбоновых кислот образуется диоксид углерода, который является побочным продуктом жизнедеятельности. В анаэробных условиях в результате гликолиза из пирувата при участии фермента лактатдегидрогеназы образуется лактат, и происходит окисление NADH до NAD+, который повторно используется в реакциях гликолиза. Существует также альтернативный путь метаболизма моносахаридов —пентозофосфатный путь, в ходе реакций которого энергия запасается в форме восстановленного кофермента NADPH и образуются пентозы, например, рибоза, необходимая для синтеза нуклеиновых кислот.

Жиры на первом этапе катаболизма гидролизуются в свободные жирные кислоты и глицерин. Жирные кислотырасщепляются в процессе бета-окисления с образованием ацетил-КоА, который в свою очередь далее катаболизируется в цикле Кребса, либо идет на синтез новых жирных кислот. Жирные кислоты выделяют больше энергии, чем углеводы, так как жиры содержат удельно больше атомов водорода в своей структуре.

Аминокислоты либо используются для синтеза белков и других биомолекул, либо окисляются до мочевины, диоксида углерода и служат источником энергии.Окислительный путь катаболизма аминокислот начинается с удаления аминогруппы ферментами трансаминазами. Аминогруппы утилизируются в цикле мочевины; аминокислоты, лишённые аминогрупп называют кетокислотами. Некоторые кетокислоты — промежуточные продукты цикла Кребса. Например, при дезаминировании глутамата образуется альфа-кетоглутаровая кислота. Гликогенные аминокислоты также могут быть преобразованы в глюкозу в реакциях глюконеогенеза.

Анаболизм

Анаболизм — совокупность метаболических процессов биосинтеза сложных молекул с затратой энергии. Сложные молекулы, входящие в состав клеточных структур, синтезируются последовательно из более простых предшественников. Анаболизм включает три основных этапа, каждый из которых катализируется специализированным ферментом. На первом этапе синтезируются молекулы-предшественники, например, аминокислоты, моносахариды, терпеноиды и нуклеотиды. На втором этапе предшественники с затратой энергии АТР преобразуются в активированные формы. На третьем этапе активированные мономеры объединяются в более сложные молекулы, например, белки, полисахариды, липиды и нуклеиновые кислоты.

Не все живые организмы могут синтезировать все биологически активные молекулы. Автотрофы (например, растения) могут синтезировать сложные органические молекулы из таких простых неорганических низкомолекулярных веществ, как углекислый газ и вода. Гетеротрофам необходим источник более сложных веществ, таких как моносахариды и аминокислоты, для создания более сложных молекул. Организмы классифицируют по их основным источникам энергии: фотоавтотрофы и фотогетеротрофы получают энергию из солнечного света, в то время как хемоавтотрофы и хемогетеротрофы получают энергию из неорганических реакций окисления.

Связывание углерода

Фотосинтезом называют процесс биосинтеза сахаров из углекислого газа, при котором необходимая энергия поглощается из солнечного света. У растений, цианобактерий и водорослей, при кислородном фотосинтезе происходит фотолиз воды, при этом, как побочный продукт, выделяется кислород. Для преобразования CO2 в 3-фосфоглицерат используется энергия АТР и NADPH, запасенная в фотосистемах. Реакция связывания углерода осуществляется с помощью фермента рибулозобисфосфаткарбоксилазы и является частью цикла Кальвина. У растений классифицируют три типа фотосинтеза — по пути трехуглеродых молекул, по пути четырехуглеродых молекул (С4), и CAM фотосинтез. Три типа фотосинтеза отличаются по пути связывания углекислого газа и его вхождения в цикл Кальвина; у C3 растений связывание CO2 происходит непосредственно в цикле Кальвина, а при С4 и CAM CO2предварительно включается в состав других соединений. Разные формы фотосинтеза являются приспособлениями к к интенсивному потоку солнечных лучей и к сухим условиям.

У фотосинтезирующих прокариот механизмы связывания углерода более разнообразны. Углекислый газ может быть фиксирован в цикле Кальвина, в обратном цикле Кребса, или в реакциях карбоксилирования ацетил-КоА. Прокариоты — хемоавтотрофы также связывают CO2 через цикл Кальвина, но для протекания реакции используют энергию из неорганических соединений.

Углеводы и гликаны

В процессе анаболизма сахаров простые органические кислоты могут быть преобразованы в моносахариды, например, в глюкозу, и затем использованы для синтеза полисахаридов, таких как крахмал. Образование глюкозы из соединений, как пируват, лактат, глицерин, 3-фосфоглицерат и аминокислот называют глюконеогенезом. В процессе глюконеогенеза пируват превращается глюкозо-6-фосфат через ряд промежуточных соединений, многие из которых образуются и при гликолизе. Однако, глюконеогенез не просто является гликолизом в обратном направлении, так как несколько химических реакций катализируют специальные ферменты, что дает возможность независимо регулировать процессы образования и распада глюкозы.

Многие организмы запасают питательные вещества в форме липидов и жиров, однако, позвоночные не имеют ферментов, катализирующих превращение ацетил-КоА (продукта метаболизма жирных кислот) в пируват (субстрат глюконеогенеза). После длительного голодания позвоночные начинают синтезировать кетоновые тела из жирных кислот, которые могут заменять глюкозу в таких тканях, как головной мозг. У растений и бактерий, данная метаболическая проблема решается использованием глиоксилатного цикла, который обходит этап декарбоксилирования в цикле лимонной кислоты и позволяет превращать ацетил-КоА в оксалоацетат, и далее использовать для синтеза глюкозы.

Полисахариды выполняют структурные и метаболические функции, а также могут быть соединены с липидами (гликолипиды) и белками (гликопротеиды) при помощи ферментов олигосахаридтрансфераз.

Жирные кислоты, изопреноиды и стероиды

Жирные кислоты образуются синтазами жирных кислот из ацетил-КоА. Углеродный скелет жирных кислот удлиняется в цикле реакций, в которых сначала присоединяется ацетильная группа, далее карбонильная группа восстанавливается до гидроксильной, затем происходит дегидратация и последующее восстановление. Ферменты биосинтеза жирных кислот классифицируют на две группы: у животных и грибов все реакции синтеза жирных кислот осуществляются одним многофункциональным белком I типа, в пластидах растений и у бактерий каждый этап катализируют отдельные ферменты II типа.

Терпены и терпеноиды являются представителями самого многочисленного класса растительных натуральных продуктов. Представители данной группы веществ являются производными изопрена и образуются из активированных предшественников изопентилпирофосфата и диметилаллилпирофосфата, которые, в свою очередь, образуются в разных реакциях обмена веществ. У животных и архей изопентилпирофосфат и диметилаллилпирофосфат синтезируются из ацетил-КоА в мевалонатном пути, в то время как у растений и бактерий субстратами не мевалонатного пути являются пируват и глицеральдегид-3-фосфат. В реакциях биосинтеза стероидов молекулы изопрена объединяются и образуют сквалены, которые далее формируют циклические структуры с образованием ланостерола. Ланостерол может быть преобразован в другие стероиды, например холестерин и эргостерин.

Белки

Организмы различаются по способности к синтезу 20 общих аминокислот. Большинство бактерий и растений могут синтезировать все 20, но млекопитающие способны синтезировать лишь 11 заменимых аминокислот. Таким образом, в случае млекопитающих 9 незаменимых аминокислот должны быть получены из пищи. Все аминокислоты синтезируются из промежуточных продуктов гликолиза, цикла лимонной кислоты или пентозомонофосфатного пути. Перенос аминогрупп с аминокислот на альфа-кетокислоты называется трансаминированием. Донорами аминогрупп являются лутамат и глутамин.

Аминокислоты, соединенными пептидными связями, образуют белки. Каждый белок имеет уникальную последовательность аминокислотных остатков (первичная структура белка). Подобно тому, как буквы алфавита могут комбинироваться с образованием почти бесконечных вариаций слов, аминокислоты могут связываться в той или иной последовательности и формировать разнообразные белки. Фермент Аминоацил-тРНК-синтетаза катализирует АТР-зависимое присоединение аминокислот к тРНКсложноэфирными связями, при этом образуются аминоацил — тРНК. Аминоацил-тРНК являются субстратами для рибосом, которая объединяют аминокислоты в длинные полипептидные цепочки, используя матрицу мРНК.

Нуклеотиды

Нуклеотиды образуются из аминокислот, углекислого газа и муравьиной кислоты в цепи реакций, для протекания которых требуется большое количество энергии. Именно поэтому большинство организмов имеют эффективные системы сохранения ранее синтезированных нуклеотидов и азотистых оснований. Пурины синтезируются как нуклеозиды (в основном связанные с рибозой). Аденин и гуанин образуются из инозин-монофосфата, который синтезируется из глицина, глутамина и аспартата при участии метенил-тетрагидрофолата. Пиримидины синтезируются из оротата, который образуется из глутамина и аспартата.

Ксенобиотики и окислительный метаболизм

Все организмы постоянно подвергаются воздействию соединений, накопление которых может быть вредно для клеток. Такие потенциально опасные чужеродные соединения называются ксенобиотиками. Ксенобиотики, например синтетические лекарства и яды природного происхождения, детоксифицируются специализированными ферментами. У человека такие ферменты представлены, например, цитохром-оксидазами, глюкуронилтрансферазой, и глутатион S-трансферазой. Эта система ферментов действует в три этапа: на первой стадии ксенобиотики окисляются, затем происходит конъюгирование водорастворимых групп в молекулы, далее модифицированные водорастворимые ксенобиотики могут быть удалены из клеток и метаболизированы перед их экскрецией. Описанные реакции играют важную роль в разложении микробами загрязняющих веществ и биоремедиации загрязнённых земель и разливов нефти. Многие подобные реакции протекают при участии многоклеточных организмов, однако, ввиду невероятного разнообразия, микроорганизмы справляются с гораздо более широким спектром ксенобиотиков, чем многоклеточные организмы, и способны даже разрушать стойкие органические загрязнители, например хлорорганические соединения.

Связанной с этим проблемой для аэробных организмов является оксидативный стресс. В процессе окислительного фосфорилирования и образования дисульфидных связейпри укладке белка образуются активные формы кислорода, например пероксид водорода. Эти повреждающие оксиданты удаляются антиоксидантами, например глутатионом и ферментами каталазой и пероксидазами.

Методы исследования

Классически, метаболизм изучается упрощённым подходом, который фокусируется на одном метаболическом пути. Особенно ценно использование меченых атомов на организменном, тканевом и клеточном уровнях, которые определяют пути от предшественников до конечных продуктов путём выявления радиоактивно меченых промежуточных продуктов. Ферменты, которые катализируют эти химические реакции, могут затем быть выделены для исследования их кинетики и ответа на ингибиторы. Параллельный подход заключается в выявлении небольших молекул в клетки или ткани; полный набор этих молекул называется метаболом. В целом, эти исследования дают хорошее представление о структуре и функциях простых путей метаболизма, но недостаточны в применении к более сложных системам, например полной метаболизм клетки.

Идея сложности метаболических сетей в клетках, которые содержат тысячи различных ферментов, отражена на изображении справа, показывающее взаимодействия только между 43 белками и 40 метаболитами, которые регулируются 45000 генов. Тем не менее, сейчас можно использовать такие данные о геномах для воссоздания полной сети биохимических реакций и образовывать более целостные математические модели, которые могут объяснить и предсказать их поведение. Эти модели особенно сильны, когда используются для интеграции данных о путях и метаболитах, полученных на основе классических методов, с данными по экспрессии генов из протеомных и ДНК-микрочиповых исследований. С помощью этих методов, модель человеческого метаболизма в настоящее время создаётся, которая будет служить ориентиром для будущих исследований лекарств и биохимических исследований. Эти модели в настоящее время используются в анализах сети, для классификации болезней человека по группам, которые различаются по общим белкам или метаболитам.

Яркий пример бактериальных метаболических сетей — устройство галстук-бабочки, структура которой позволяет вводить широкий спектр питательных веществ и производить большое разнообразие продуктов и сложных макромолекул, используя сравнительно немного общих промежуточных веществ.

Основная технологическая основа этой информации — метаболическая инженерия. Здесь организмы, например дрожжи, растения или бактерии, генетически модифицируются, чтобы сделать их более эффективными в биотехнологии и помочь в производстве лекарств, например антибиотиков или промышленных химических веществ, таких как 1,3-пропандиола и шикимовой кислоты. Эти генетические модификации обычно направлены на уменьшение количества энергии, используемой для производства продукции, повышения урожайности и снижения производственных отходов.